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Effect of a critical field on screened dielectric-breakdown growth
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In this paper, we have shown that, due to a critical field, the patterns growing in the screened Lapla-
cian field will be affected. When the critical field is zero, there is a transition from a dense growing to a
single branch of the aggregate. At a higher critical field, the pattern shows a spiky-type aggregate and
for a small critical field, the transition is cut. For an intermediate critical field, the result shows that,

below the transition, there is no dense structure.

PACS number(s): 68.70.+w, 05.40.+j, 61.50.Cj

I. INTRODUCTION

Much of the recent interest in fractal-growth phenome-
na has arisen because of the universal nature of the ob-
served patterns. The diffusion-limited-aggregation
(DLA) and dielectric-breakdown (DB) models have been
very successful in illustrating the possibility of fractal
growth in a Laplacian field [1,2]. The growth of metallic
aggregates through electrochemical deposition (ECD) ei-
ther has a fractal character, as in diffusion-limited aggre-
gation, or yields dendritic crystals, or gives rise to dense
radial structures [3—5]. In electrochemical deposition, a
transition from a dense pattern to a more diluted
branched structure has been observed and referred to as
the Hecker transition. More recently, a study of the
effects of screening on structures growing in electrostatic
fields was reported where the Laplacian equation has
been replaced by

V=A% , (1)

the linearized Poisson-Boltzmann equation [6]. The ori-
gin of screening might lie in the presence of free charges,
such as in the cases of electrochemical deposition and
dielectric breakdown. The results show that screening
leads to a much richer variety of patterns. It introduces a
new length scale and a nontrivial dependence on the
boundary conditions which is responsible for a transition
that resembles the Hecker transition: a pattern may have
a fractal character at scales shorter than the screening
length, be Eden-like (i.e., compact), or grow dense, and
then it follows a transition from dense to single-branch
growth. This transition is characterized by a change in
the sign of the electrostatic field at the aggregate [6].
However, in our opinion, the transition found in Ref.
[6] will be affected by the existence of a critical field in
the growth of the pattern. Our aim in the present paper
is to study the effect of the critical field on the pattern
growth. Actually, the dielectric-breakdown model was
generalized to include lower cutoffs, which prevent
growth at low field; for example, one cutoff is at the criti-
cal fields [7]. It is shown that the growth will stop after a
crossover from the usual DB patterns to a spiky behavior
[7,8]. Another motivation of the introduction of the

1063-651X/93/48(1)/476(4)/$06.00 48

cutoffs is to model a capillary pressure into the problem
of viscous fingering. If the displacement is of a wetting
fluid by a nonwetting fluid, then the capillary pressure
prevents the nonwetting phase from entering a pore when
the pressure is lower than the local capillary pressure P,
[9]. In simulations of porous media as a network of
ducts, P, depends only on the ducts’ width via the La-
place law. Taking the radii of the ducts to be constant all
over the network, we conclude that each bond will be ac-
tive if the viscous pressure on it, P, is bigger than P., and
will not be active if P <P,. We see that the capillary
pressure is equivalent of the critical field [8]. In addition,
in the solidification the kinetic effects (undercooling and
surface tension) also in some ways, similar to the case
mentioned above, are singular perturbations affecting the
pattern formation.

In this paper, we first follow the standard growth pro-
cedure of the dielectric-breakdown model [2] and numeri-
cally solve Eq. (1) by using an iterative method. Then we
grow the patterns, using numerical simulations in the
presence of four different critical fields in a planar
geometry and present a discussion.

II. RESULTS AND DISCUSSION

For the numerical simulations, we use a planar
geometry with a 100 X200 square lattice and the bound-
ary conditions ¢’=5X 1077 on the aggregate and ¢°=1
on the fixed boundary, as well as a periodic boundary
condition on the x direction. The aggregation is related
to the local electric field E ;» i.e., with probability
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where E;=—V¢ and ¢ is obtained by iterating the
screening equation (1) with 1/A=10 being the screening
length. The effect of the critical field E. is introduced in
Eq. (2). This responds to a cutoff on the gradients, i.e.,
there is no growth at point j if [E;| <E,, and the surviv-
ing probabilities are renormalized, P;—P;/P;, where
P,=3, P, for those k’s for which |E;|>E..

In Fig. 1 we show the patterns with four different criti-

(2)
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cal fields, E,=0, 4X107% 5X107° and 5X 1078 We
can see that for zero critical field, E. =0, there is a transi-
tion. The growth is divided into two stages: (I) At the
beginning, the growth is just like the dielectric-
breakdown model; however, due to the screening, the
growth before the transition becomes denser. Almost all
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the perimeters are grown, and this gives rise to a dense or
Eden-like pattern. (II) Because of the instability for all
wavelengths just beyond the transition, once a small tip
develops it will be amplified and the pattern appears like
a branch of a tree. At the same time, the electric field at
the surface of the aggregate, E (/), changes its sign during
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FIG. 1. Dielectric-breakdown patterns of the screened Laplacian growth with critical field. (a) E,=0; (b) E,=4X107% (c)

E,=5X107%(d) E.=5X10"8,
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the transition, and it vanishes at the transition. For con-
venience we can define an electric-field value E, near the
transition which is actually small, and we discuss the
cases for E,>E,, E.>E,, and E, ~E,, respectively. We
can expect the situation to be different from that of
E_,=0. The whole growth process for the pattern is such
that, before transition, the growth occurs for those per-
imeters for which the probabilities are larger than that of
the tip, which may develop into a single branch of a tree.
If the cutoff is on these perimeters, the growth of the pat-
tern may completely stop, and if the cutoff is just around
the transition there will be no transition.

When E. >>E,, E(l) may not reach the value E,, since
the growth is cut off much earlier and so without perime-
ters with |E jl > E_, and the growing is stopped before the
transition takes place. This is just the case shown in Fig.
1(b), with E,=4 X 10~ *>>E,. The pattern is a spiky-type
structure [8]. Nevertheless, for the case of E, ~E,, since
the cutoff is much smaller and just around the transition,
almost all perimeters are grown, and so the pattern ap-
pears very dense. No sharp tip can develop. Thus there
is no transition [see Fig. 1(c)]. However, the interpreta-
tion for the case of E, = E, is slightly different. Below the
transition, some perimeters are cut, and some are not.
The uncut perimeters will grow. After the rearrangement
of the potential, unlike the case for Fig. 1(c), due to the
dilute pattern structure, for few perimeters, the gradient
of the potential or the electric field may be larger than
the critical field E_, and these perimeters grow. The un-
stable tip is amplified to give rise to a tree structure [see
Fig. 1(d)]. Actually, the discussion above can be drawn
from the ratio between the instantaneous rates of growth
of the perturbation (8) and that of the flat surface (/),
which is (see Ref. [6])

_8/8 _ |22y 2un A
a, i1 (A*+m?) £ . (3)

Because of the existence of the cutoff, the existence of a
critical field, E (/) cannot become zero (at the transition),
instead of a finite value E,. Thus the growth rate «,, for
all m does not go to infinity and the transition may not
appear as sharp as Fig. 1(a).

In Fig. 2 we have plotted the average growth speeds,
the averages of absolute values of the fields at the aggre-
gate surface. There are minimal values for the velocity
and the minimum corresponds to the transition. For
curve 1, which corresponds to Fig. 1(b), the velocity is a
constant, and the pattern is a spiky-type and is stopped
by such a large critical E,=4X107% Curve 2 corre-
sponds to Fig. 1(d). The pattern below the transition is
the same as the dielectric-breakdown growth. However,
one tip has developed into a single tree. Curve 3 is for
smaller E.; the cutoff is just about the transition [see Fig.
1(c)]. Curve 4 describes the case of zero critical field [Fig.
1(a)].

The position of the transition depends on the boundary
conditions of ¢i, ¢°, the screening length A~ ! and the sys-
tem size L, and it is very sensitive to the values of ¢i and
¢° for the fixed A and L. Since in our four cases the
values of ¢’ and ¢° are kept constant, the relevant singu-
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FIG. 2. The growing velocity: the average of the absolute
value of electric field at the surface of the aggregate E (/). The
logarithm of E (1), logo(|E(])|) vs Y. Curve (1): E.=4X 1074
Curve (2): E.=5X107% Curve (3): E.=5X10"% Curve (4):
E. =0.

larities happen at the same position Y =50 in all the
figures. Similarly, for different values of ¢’ and ¢°, al-
though the positions of transitions are shifted, the physi-
cal relevances are the same. There is always an electric
field for the transition E, and the structures of the pat-
terns are only affected by the value of the critical field E,.
We checked this by some other iterations. Actually, this
appealing feature is for the case of ¢°> ¢’ because of the
electric field E (/) changing its sign at a position which is
related to the transition. Nevertheless, for the case of
¢#° < ¢', it has been shown that there is no transition since
the field at the surface of the aggregate has the same po-
larization of the electrodes in the whole growth [6].

III. SUMMARY

In this work, we have shown the effects of the critical
field on the screened dielectric-breakdown pattern. The
existence of the critical field does indeed affect the struc-
tures of the patterns. For a higher critical field E, (or
higher cutoff of the growing probability), the pattern
shows a spiky-type aggregate. For a small critical field,
the transition is cut. For the intermediate critical field,
the structure of the pattern shows that below the transi-
tions there is no longer dense growth.

The essential idealization made in the original dielec-
tric breakdown model is the assumption of a perfect con-
ducting phase growing in the perfect insulator and the
omission of a critical field E,=0. The latter assumption
is equivalent to the statement that the process is indepen-
dent of the applied voltage. From a physical point of
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view this assumption seems to be a bit too strong [7].

The other aspect of interest of our study is that, in the
practical case, E(I) will never be zero due to the ex-
istence of the fluctuations. This situation responds to the
existence of the cutoff E, in the model. When E, is
small, the growth process may be such that, below the
transition, there may not exist a denser structure. This is
the real case in electrochemical-deposition aggregates, in
which, before the Hecker transition, the pattern is less
dense [3-5].

Finally, we add that an extension of the problem in

question has been reported based on the biharmonic
equation [10].
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